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Abstract

Virtual Network Functions (VNFs) in cloud servers of Fifth Generation (5G) net-

work systems are responsible for executing offloaded codes from mobile users.

Placement of VNFs in the cloud is very complicated to get on-time execution

service due to many reasons including users’ mobility and resource heterogeneity,

which often cause VNF relocations from one data center to another. Minimiz-

ing service delay (i.e., maximizing user Quality-of-Experience) for the user ap-

plications and the number of VNF relocations are the two main design goals of

VNF placement problem; however, they do oppose each other. In this paper, we

have formulated the above problem as a Multi-objective Integer Linear Program-

ming (MILP), which is proven to be an NP-hard one. The proposed optimization

framework trades-off between the number of VNF relocations and user Quality-

of-Experience. We then develop an Artificial Intelligence based meta-heuristic

Ant Colony Optimization (ACO) algorithm to achieve sub-optimal placement of

VNFs within polynomial time. The performance analysis results, carried out in

Cloudsim, depict that the proposed system outperforms the state-of-the-art works

significantly in terms of user satisfaction and VNF relocation overhead.
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Chapter 1

Introduction

1.1 Introduction

The Internet has become an inextricable part of our day-to-day life in recent times.

The number of devices connected to the Internet is getting increased rapidly [1].

Almost all types of instruments from communication devices to home appliances

like TV, washing machine, toaster, etc. have started to be connected to the In-

ternet [2] [3]. The role of Fifth Generation (5G) cellular network is expected

to be very promising for accommodating increasing reliability requirements on

Internet-centric mobile applications [4] [5] [6]. 5G heterogeneous network (Het-

Net) is anticipated to provide more lucrative features such as higher throughput,

lower latency, higher mobility range, massive device connectivity, higher network

capacity and energy efficiency. It provides up to 20 times accelerated downloading

and uploading speeds than 4G, 10 times lesser round trip latency and bandwidth

up to 1 Gbps compared to only 20 Mbps in 4G [7].

Software Defined Network (SDN) and Network Function Virtualization (NFV) are

the two influential key technologies which contribute significantly for developing

the architectural design of 5G heterogeneous network [8] [9]. Virtualization is

a middle layer technology between hardware and software layers which creates

virtual representation of something such as virtual machines, servers, memory,

network functions, etc. The NFV offers the advantage of segregating the network

functions from proprietary hardware appliances and executing these functions in

1
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software on standardized hardware instead. These decoupled network functions

are referred to as Virtual Network Functions (VNFs) [10].

The NFV offered by Cloud Computing has obtained much popularity as constantly

growing number of enterprises and individuals are offloading their workloads to

cloud service providers and getting served by them [11]. This technology is also be-

ing taken into account by 5G mobile operators to deal with the increasing number

of data traffics and data intensive applications [12]. In Mobile Cloud Computing

(MCC), because of mobile devices having low computational power and battery

lifespan, most of the applications are executed on various VNFs operating in dif-

ferent high computational data centers (DCs) in the cloud [13] [14].

1.1.1 5th Generation Network (5G)

5th Generation (5G) wireless network is very emerging technology in the recent

world. 5G supports high frequency wave ranging from 3 to 300 GHz. It provides

higher data rate, higher throughput and almost zero latency. 5G network tech-

nology provides 1 ms round trip latency which is almost 10 times faster than 4G.

In 5G, larger base stations are split up to several small cells like micro cell, pico

cell, femto cell. These small cells are known as miniature base stations. Due to

this heterogeneous small cells, 5G provides enormous number of connected de-

vice that helps us to handle wireless traffic explosion. 5G provides energy aware

smart base stations that reduces almost 90% energy than the previous one. Inte-

gration of both lower and higher frequency band, it brings revolutionary changes

in the modern world. Lower bands handle basic coverage and higher bands are

responsible for higher data rates. Device to device communication, IoT, vehicular

communications, healthcare applications and all other novel emerging applications

form the major driving force behind 5G [7].

1.1.1.1 Significant Applications of 5G

We can’t think of our life without Internet. However, human interaction devices

failed to provide better performance due to higher response time and lower up-

loading and downloading speed. 5G network is the key enablers to improve better

performance of those devices. Some of the most significant applications of 5G are

described below.
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• Smart Factory/ Industry 4.0: 5G brings revolutionary change in indus-

try. It helps us to take real time decisions, improves operational visibility

and efficiency due to greater spectrum availability. Due to the real time

visibility, 5G optimizes production by connecting all equipment in real time

and avoids costly disruption.

• Transportation: 5G Internet of Things (IoT) brings significant changes

in transport management and transit system. Users can now get real time

traffic data within a few milliseconds. By improving efficiency and accuracy

for asset tracking and driving management, it helps us to build smart cities.

By collecting real time data using smart sensors, 5G IoT solutions help us

better traffic and parking management.

• Smart City: Forth industrial revolution has created a wide scope for the

evolution of smart cities by forming advanced urban architecture that uses

data for enhancement of the quality of the daily life of citizens. However, the

adoption of smart cities faces various problems and 5G wireless network can

drive the smart urban services to a new level. With reduced latency, wider

bandwidth, enhanced device connectivity and more reliability, deployment of

5G will enhance the functionalities of smart cities such as increased security,

enhanced emergency response, better traffic management, energy efficient

homes, developed city infrastructure management etc.

• Health-care: Due to higher data rates and lower latency, patients can

take real time service and treatment remotely. Health-care companies are

expanding their in-home services for aging and disabled people by monitoring

their conditions remotely. 5G IoT-enabled wearable devices also help us to

monitor fitness, health and wellness factor. This is another revolutionary

change occurred by 5G.

• Agriculture: 5G-IoT enables smart farming solutions by introducing smart

sensors, smart gateways and monitoring system to collect and analyze real

time information. Crop observation, irrigation management, storage man-

agement, precision farming are the examples of smart farming system. Using

sensor data, we can now improve the monitoring system and manage irriga-

tion system to keep up-to demand of the larger populations.

• Robotics & Drones: 5G network devices have lower response time than

4G. For that reason, 5G enabled robots can analyze more data in real time,
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absorb new things in few amount of time and can better communicate with

the real world. Due to higher bandwidth, 5G enabled drones can shoot 4k

or 360 degree videos more efficiently and bring emerging changes in the real

world.

• Artificial Intelligence: Due to advancement of AI technology, complex

deep learning based AI algorithms have been applied in today’s application.

This has been possible due to the petabytes of data generated by networks

within few milliseconds. Autonomous cars, robotics, automation, several

intelligent applications of mobile devices are driven by AI.

• Entertainment & Multimedia : At present, a huge amount of mobile

internet traffic is being occupied by video download and streaming. 5G is

anticipated to add a new dimension to entertainment sector by offering a high

definition virtual world on mobile devices, high speed 4K video streaming

with crystal clear audio quality, high quality live streaming without inter-

ruption, providing access to HD TV channels from mobile devices, offering

improved Virtual Reality (VR) based gaming experience etc.

1.1.2 evolved Node-B

The term base station is very common in mobile telephony and wireless commu-

nication. In wireless communication, it is known as transceiver by which a lot of

devices or mobile devices are connected. In 5G network, this base stations are

split up to several small cells i.e., pico cells, micro cells, femto cells or miniature

base station. These small cells are very useful in densely populated areas such as

sports venues, airports, shopping centers and train stations. These cells are known

as evolved Node-B (eNB). The previous base stations are known as Node-B which

have minimum functionality. Due to having no control functionality, these are con-

trolled by Radio Network Controller (RNC). However, in 5G, base stations have

controllers that maintain the control functionality which simplifies the network

architecture and offers lower response time. For that reason, these base stations

are known as eNB.
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1.1.3 Virtual Network Function

In Network Function Virtualization (NFV) technology, Virtual Network Functions

(VNFs) are responsible for handling network functions that run on Virtual Ma-

chine (VM) rather than carried out by dedicated hardwares [10]. In our thesis,

we consider VNF can handle all types of network functions like firewalls, social

networks, high computational applications and all types of mobile applications

that run in the Data Centers (DCs) rather than individual mobile devices. The

main benefit of using VNF is that new services or applications have not be in-

stalled or configured manually in all hardwares. For that reason, VNFs can help

us to improve network scalability, reliability and better use of network resources.

It also helps us to reduce power consumption of the mobile devices and reduces

operational cost.

1.1.4 Mobile Cloud Computing

Mobile Cloud Computing (MCC) uses cloud computing that provides extensive

computational resources to mobile devices, network operators and cloud service

providers. It saves huge amount of battery life of the mobile devices and improves

reliability and flexibility by backing up information in the cloud. It also enables

users to securely collect and integrate data from various sources. The basic differ-

ence between MCC and cloud computing is that cloud computing is simply storing

and accessing data from the cloud whereas, MCC allows transmission of voice, data

or any other services by using any wireless device without connecting to a physical

link. MCC is very effective for high performance computational applications like

image processing, natural language processing, sharing GPS/ network data, social

networking, multimedia search and sensor data applications [15].

1.2 Motivation

5G integrated with Mobile Cloud Computing offers us high speed computation

of applications in comparatively less amount of time and ensures improved user

experience. However, the user experience and service performance depend highly

on the proper placement of VNFs in the data centers. Due to user mobility, static

placement of these VNFs will not work and will degrade the user experience as well
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as overall performance. Therefore, dynamic and optimal allocation of the VNFs in

the data centers satisfying all the performance parameters is a troublesome task

in 5G because of user mobility.

Resource management in cloud computing has been well studied in many research

problems [16] [17]. However, because of user mobility, allocation of VNFs for

running user applications in different data centers is immensely challenging and

difficult task in 5G. For optimal placement of VNFs, various parameters are needed

to be considered such as total number of VNF relocation, communication delay as

well as response time to get service, its cost, etc. If performance of one parameter

is attempted to be improved, performances of some other parameters degrade

as a consequence. For example, an attempt to minimize the number of VNF

relocation results in increased communication delay as well as response time and

vice-versa. So, optimal allocation of resources in different data centers satisfying

all the performance parameters is a major challenge.

The problem of optimal allocation of the resources from the mobile devices to the

DC has been well studied in many papers. However, these existing approaches in

the literature encounter several limitations. In [18], the authors have studied the

resource allocation problem in the case of static users but the approach cannot

be feasibly used when there exists user mobility. For minimizing the load of the

Virtual Machines (VMs), the authors in [19] have placed the VNFs efficiently in the

DCs but minimizing VNF relocations and service cost have not been considered.

However, in A-SGWR [20], minimization of the number of VNF relocations have

been taken into account but not the response time for getting the service. In S-

PL [20], the authors focused on minimizing the total response time but the total

number of relocations and its overhead have been ignored.

Therefore, in our project, we propose optimal and meta-heuristic VNF placement

algorithm in the data centers considering both the conflicting objectives that are,

minimizing the number of VNF relocation and minimizing total response time to

get service.

1.3 Problem Formulation

Fig. 1.1 shows the basic concept of user services architecture in 5G. The user

equipments (UEs) are connected to respective evolved Node-Bs (eNBs) of their
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eNB

Office

University

Data Center 1 Data Center 2

Home

User

Smartphone

VNFs

Figure 1.1: User Services Architecture in 5G

service area in the network. The cloud domain comprises a number of data centers

that serve the eNBs in executing their user applications. Users of an eNB are

served by VNFs of exactly one data center. In Fig. 1.1, for example, associated

eNBs of the home and university is connected to data center 1 and data center 2,

respectively. When any user moves from his/her home to university, the placement

of the running VNFs of that user becomes a matter of concern.

The VNF relocation is only necessary in cases when a user moves between two

eNBs connected to different data centers. In such case, VNF can be relocated

from previous DC to service DC minimizing the communication path between

the serving DC and new eNB, which in turn minimize the response time. Al-

ternatively, user can get service from the DC on which VNF was running via the

current serving DC. However, this second way causes higher response time. There-

fore, minimizing VNF relocations and minimizing communication delay are two

conflicting objectives. Artificial Intelligence (AI) is a branch of computer science

which enables the development of computer programs which possess the ability

to make decisions rationally and solve problem by learning from experiences and

improving it gradually [21]. Due to the success of AI in solving complex control

and decision-making problems, it is anticipated to contribute significantly for de-

veloping various aspects of 5G network and solving complicated problems. In this

project, we bring trade-off between these two aforementioned conflicting objec-

tives using Multi-objective Integer Linear Programming (MILP) and Ant Colony
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Optimization (ACO) based VNF allocation algorithm.

1.4 Research Objectives

In this project, we have developed an optimal and meta-heuristic placement of

VNFs in the DCs that trades-off between minimizing VNFs relocation and min-

imizing response time due to user mobility. The main objectives of this project

are:

• Development of an optimal placement algorithm for the Virtual Network

Functions (VNFs) in the DCs to increase QoE of the users.

• Maximizing QoE i.e., minimizing response time to get a service.

• Minimizing the number of VNF relocations i.e., migration cost to migrate a

VNF from one DC to another.

• To investigate the boundary performances for maximizing QoE or decreasing

the cost of operation.

• To study comprehensive performance of the proposed algorithm with the

state-of-the-art works.

1.5 Contributions

In our work, our aim is to allocate the VNFs in the DC for the mobile users

maintaining a trade-off between VNFs relocation and response time. The main

contributions of this project are summarised as follows:

• We formulate the problem of allocating the VNFs associated with user mo-

bility as a Multi-objective Integer Linear Programming (MILP) problem.

• We have brought trade off between minimizing the number of VNF reloca-

tions and minimizing the total response time (hereafter, we call our system

TradeRC) to get the service ensuring user Quality of Service.
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• Due to the NP-hardness of our proposed MILP system, we develop an

Ant Colony Optimization (ACO) meta-heuristic based VNF placement algo-

rithm. The operational principal of the proposed system is driven by learning

from the previous experiences.

• We implement and simulate our proposed system TradeRC in CloudSim [22]

and compare it with other state-of-the-art works. The results state that

the user QoE in TradeRC has been increased by about 25% and relocation

overhead decreased by about 15% compared to other state-of-the-art works.

1.6 Organization

The rest of the project report is organized as follows. Chapter 2 presents some

related research works. Chapter 3 describes the system model, problem formula-

tion and solution details of our proposed system. In this chapter, we also present

ACO-based VNF allocation problem in the data center. Subsequently, Chapter 4

demonstrates the performance of the proposed optimization solution and compar-

ison with other state-of-the-art works. Finally, Chapter 5 summarizes our work

and outlines of the future work plans.



Chapter 2

Related Works

2.1 Introduction

VNF placement is a very emerging research problem in 5G heterogeneous network.

The VNF placement problem can be modelled as a type of Virtual Machines (VMs)

migration problem since VNFs are run on VM. A wide plethora of research works

related to VM migration in distributed cloud or hybrid cloud have been addressed

in [23–27]. As NFV integrated with SDN is becoming an emerging technology for

development of the 5G network architecture, placement of VNF has gained much

attention of many researchers. In this chapter, we discuss the existing works in

the literature on 5G cellular network, Software Defined Network (SDN), mobility

behaviour of the users and optimal VM/VNF migration in 5G cellular network.

For our knowledge base, we have gone through several research articles and a few

books on the topic. Here we discuss some thesis works and some recent articles

dealing with VNF placement problem. Related works on this field are described

as follows.

2.2 Centralized SDN Architecture for 5G

Addressed Problem: In order to satisfy the increasing demand of higher

data rate and low latency cellular broadband applications, the need for 5G tech-

nology is growing rapidly. This paper proposes modification in the 5G architecture

standardized by the Third Generation Partnership Project (3GPP) to apply the

10
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principle of Software Defined Network (SDN). It removes the control functionality

from Radio Access Network (RAN) to the network core leaving the base stations

(known as eNB) as pure data plane node to reduce the signaling cost between

the Radio Access Network (RAN) and the network core [28]. They justified effec-

tiveness of their proposed architecture by evaluating Key Performance Indicator

(KPI) of 5G networks such as network registration time and handover time.

Method Used: In this paper, they proposed a new architecture for 5G which

applies idea of SDN to the RAN function. SDN separates data plane from the

control plane. In their proposed architecture, they removed the RAN control func-

tions such as Radio Resource Control (RRC) protocol layer and Radio Resource

Management (RRM) functionalities from the gnBs to the network core.

In the proposed architecture, Access and Mobility Management Function (AMF)

function from the core and the RRC layer with RRM function from the eNB which

is the only control function of eNB are merged together and placed in the 5G core.

This new evolved function in the core is known as enhanced AMF (eAMf).

Positive Aspects: The removal of RRC layer with RRM functionality from

the eNB to the 5G core eventually reduces the signaling cost as less encoding

decoding processes are performed for call registration, user verification etc. This

is because of the direct delivery of RRC messages from UE (User Equipment) to the

eAMF function embodied in 5G core without any processing at eNBs. The authors

evaluated the registration and handover time by simulating both the architectures

with the help of ns-3. The results show that proposed 5G architecture gives less

registration and handover time the 3GPP’s 5G architecture.

Challenges: This paper proposed SDN based 5G architecture but did not work

with improvement of specific features of 5G network such as mobility management,

resource management, load balancing etc. Improved Performance analysis result

should have been presented comparing with other state-of-the-art works.
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2.3 SDN Based Resource Management in 5G

Addressed Problem: In the case of heterogeneous network, resource man-

agement is one of the major issues. SDN based resource management algorithm

is proposed for LTE and 802.11p taking into account velocity and mobility man-

agement in [29].

Method Used: Resource management is one of the major challenges for het-

erogeneous network. In this paper, an improved algorithm is proposed for data

offloading in case of new call and handover.

The authors have assumed a network consisting of 802.11p Road Side Unit (RSU)

which is for transmitting data between vehicles and roadside infrastructure and

LTE nodeBs which are the base stations. Considering mobility issue, they have

classified users in two types, pedestrians and vehicles. They have proposed differ-

ent algorithms for traffic offloading between LTE and 802.11p. They have priori-

tized handover over new call.

• Algorithm for resource management for NC (New Call): When a

new call arrives, the type of user is determined by checking the velocity with

a threshold value. Then the new call is either accepted or blocked checking

the available channel and the guard channel .If number of available channels

exceeds the guard channels it is blocked else accepted.

In case of pedestrian, if the data to be processed exceeds the threshold

amount then the data is offloaded between LTE and 802.11p else it is of-

floaded to LTE only. And in case of vehicles, if the data to be processed

exceeds the threshold amount then the data is offloaded between LTE and

802.11p else it is offloaded to 802.11p only.

• Algorithm for resource management for HO (Handover) calls: The

algorithm is similar as for new call except the blocking part. The check for

available channel and comparing it with guard channel number for blocking

or acceptance of that call is omitted here.

Positive Aspects: The offloading of resources between LTE and 802.11p helps

to meet the requirements of delay and loss sensitive data flow. And the authors
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have taken into consideration different types of users and velocities which improves

the process of offloading.

Challenges: In this paper, the deployment process of SDN in 5G has not

been discussed. The authors did not consider resource management for other

applications besides new calls and handover calls.

2.4 Efficient Task Migration Policies for Cloud

Computing Systems

Addressed Problem: Due to limited processing power and energy, mobile

devices offload their tasks in the cloud. Efficient task management is very compli-

cated due to dynamic nature of the tasks because the pattern of the task varies with

time and location. The capacity of the VMs are is also time dependent that can

be increased, decreased or constant with time. Besides these, user mobility pro-

vides additional challenges for task migration. In this paper [30], the authors have

investigated the lightweight task migration techniques for the shared resources of

the MCC. Due to user mobility, each time a user is attested to only certain number

of servers those are attested to the current BS. Each time migration decisions are

taken according to the load of the cloud and anticipated execution time.

Method Used: The execution of a task is dependent on number of different

parameters like user mobility, task arrival time and effect of multitenancy. Three

types of task migration techniques are developed in this paper.

• Cloud-wide task migration, where all migration decisions are taken by

the central cloud that maximizes the objectives of the cloud provider. When

migrating several conditions are maintained i) tasks of increasing data vol-

ume are given priority to migrate ii) tasks that have significant amount of

residual processing burden are given priority to migrate iii) tasks that expe-

rience momentous multitenancy cost are preferred to migrate.

• Server-centric task migration, where migration control engine resides in

each server and makes decision from that server where the task is currently
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executing. It has lower complexity than cloud-wide task migration. Each

server periodically check whether execution time can be improved by mi-

grating a task to a new server. There needs to synchronization among the

server.

• Task-based migration, where migration decision is taken by the task itself

in order to minimizing its execution time.

Positive Aspects: In this paper, three types of solutions are proposed for

task migration to minimize execution time in the cloud. These methods consider

interaction of co-located tasks in the cloud and migration cost to migrate a task.

By varying the number of tasks and link capacity, cloud wide task migration

performs better than other two approaches in terms of total number of migrations

and average task lifetime.

Challenges: The authors have not considered any application deadline to get

the services. They also did not consider the DC’s capacity to place a VNF in a

DC to get on-time service. Users can take service from the current DC without

migrating VNF from the previous one. They also didn’t consider it. In task-centric

migration method, an individual task is migrated to another cloud considering user

mobility and load of the cloudlets. However, it failed to utilize cloud resources

effectively and the performance of successful task execution within deadline is

very poor.

2.5 User Mobility-Aware VNF placement in 5G

Addressed Problem: Due to user mobility, optimal placement of VNF (Vir-

tual network Function) that forms a virtual network infrastructure (VNI) within

the same data center is the main concern in [20]. On each data center, one or

more VNFs of PDN-GWs (Public Data Network Gateways) and S-GWs (Serving

Gateways) can be initiated that are created on demand and in a dynamic manner

to form a VNI. Some points are considered to solve this problem:

• A UE(user equipment) can not have more than one S-GW at the same time.
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• When an UE leaves its current service area, it needs to change its S-GW.

This is called S-GW relocation and want to avoid this as much as possible.

• The path between UE and its corresponding PDN-GW has to be shortened.

This two conflicting objectives are deal with considering the mobility features and

mobile users behavioural patterns.

Method Used: To solve this problem, two solutions are proposed. 1) In the

first solution S-GW relocation cost is given more priority. 2) Second solution given

priority on high QoE but shortening path between eNBs and PDN-GW.

• A-SGWR: Avoiding S-GW Relocation In this solution, min-max ap-

proach is used to minimize the S-GW relocation overhead. Initially maxi-

mum delay tolerated DelayMAX by this network can be set infinity. In this

case, optimal solution is obtained when all eNBs to the same data center

reduce the S-GW relocation overhead.

• S-PL: Shortening Path Length between eNBs and PDN-GW The

authors have wanted to optimize the path cost of the communication path be-

tween UEs and their respective PDN-GW VNF. Initially, maximum amount

of S-GW relocation overhead SGWRMAX by this network can be set infinity.

In this case, the optimal solution would converge when the path cost of all

eNBs associating to its nearest neighbour is minimal.

To evaluate this solutions, several simulation tool based on CPLEX, Matlab and

CVX are used.

Positive Aspects: In this paper, a set of solutions to the problem of VNF

placement on federated cloud to create efficient VNI are proposed. This proposed

solutions tackle two conflicting objectives.

Challenges: In the first solution, communication delay can be infinite, which

is not practical. In the second approach, number of relocations can be infinite.

This is not feasible in real life. These are the major limitations in these two

methods. The authors did not take into account resource capacity of each DC.

They considered infinite amount of resources of each DC.
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2.6 Dynamic Resource Allocation Exploiting Mo-

bility Prediction in 5G

Addressed Problem: In this paper, to run high computing powerful appli-

cation and extending battery life of the mobile devices, there is a possibility to

offload computing task in the cloud. In Mobile Edge Computing (MEC), tiny

sized data centers are placed in the eNBs [19]. Therefore, low latency applications

or real time applications can easily get service from that DC. To compute a task

in the cloud, a VM is created to allocated computed resources in the cloud. Due

to users mobility, optimal allocation of the resources at the base station changes

over time. The authors solved users mobility by VM migration and finding a

new communication path between VM and UE by fixing the VM at its previous

location.

Method Used: To find the user’s next predicted position, they used SINR

(Signal to Noise Inference Ratio) mapping. If the SINR value is increasing than

the previous SINR value, the user is going far away. To offload a task when any user

is moving, VM should be always ready to process that task. When offloading any

task, we need uploading delay, processing delay, downloading delay, VM creation

delay and VM starting delay. By using SINR value, they predicted the user’s next

possible position and placed the VM in that position.

Positive Aspects: The authors have shown that the average offloading delay

is reduced in significant amount than other previously proposed algorithms. The

authors have also shown that energy consumption is reduced by 9%.

Challenges: In this paper, tiny data centers are created in each base station.

So, when any user moves form one eNB to another eNB, we need to relocate VM

many number of times. Therefore, in this context, MEC is better for low latency

service application. However, the number of relocations is increased. Creating

these VMs and keeping tiny sized data center at each eNB is very costly. The

authors have not considered any resources capacity of the DCs.
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2.7 Research Gap

Many state-of-the-art works have proposed solutions to the VNFs placement prob-

lem. The authors in [18] have solved the problems for static users only. However,

offloading the task in the data centers is very computationally expensive when

the user is mobile. Subsequently, in order to minimize total resource cost, Zhang

et al. [31] have proposed a framework for dynamic service placement in multiple

data centers. They have only considered total response time between a DC and

user location. However, they didn’t consider any maximum number of resource

allocation under a DC. Taleb et al. [20] have proposed algorithms dealt with two

conflicting objectives, namely minimizing the path distance between PDN-GW

and UE and minimizing the S-GW relocation by providing individual solutions

for achieving these two objectives separately. In Shortening Path Length (S-PL)

system, they have minimized the path delay between UE and PDN-GW. However,

they did not impose any limit on the number of S-GW relocations tolerated in the

network. On the other hand, In avoiding S-GW relocation (A-SGWR) system,

they have tried to minimize the number of S-GW relocations. However, they did

not impose any limitations on the amount of allowable communication delay in

this case. Moreover, they have considered infinite capacity of the data centers for

placing the VNFs. Considering all of the issues, we want to develop a solution

bringing trade-off between the number of VNFs relocations and the user QoE due

to user mobility.

2.8 Conclusion

From the above discussions, we can see that, a lot of works have been done for solv-

ing VNF allocation problem in 5G HetNet. However, none of the existing works

focused on the efficient VNFs allocation system due to user mobility considering

both minimizing number of relocations and response time. The number of relo-

cations increases as a consequence of concentrating only on minimizing response

times. Again, taking service from the previous DC reduces response time which

in turn maximizes the number of relocations. These observations have driven

us to make a framework that trades-off between minimizing the number of VNF

relocations and increasing the user Quality-of-Experience.
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Proposed Approach

3.1 Introduction

In this chapter, we focus on the description of our proposed approach to solve the

above mentioned VNFs placement problem. At first, the system architecture of

VNF services in the 5G network and various assumptions are described. Then,

an optimization framework to solve the VNFs placement problem, proof of NP-

hardness of that proposed optimization model and a meta-heuristic algorithm for

VNFs allocation have been presented in details.

3.2 System Model and Assumptions

Fig. 3.1 represents the system architecture of the network. The system archi-

tecture consists of two domains. One is the cloud domain and another one is

the Radio Access Network (RAN) domain. The could domain comprises a set of

data centers (DCs), D. These data centers have strong wired connection among

them and the DCs can take services from one another through exploiting cloud

confederation [32].

The RAN domain consists of a set of access points, i.e. base stations called evolved

Node-B (eNB). Several users can be connected to an eNB through radio signal. A

group of eNBs are connected to a base station controller. An eNB is connected to

exactly one data center through the Serving Gateway (S-GW) and Packet Data

18
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Figure 3.1: System Architecture of VNF services in 5G

Network Gateway (PDN-GW) of that DC [33]. Each DC has multiple number of

eNBs connected to them. In some areas (busy areas), DCs serve huge number of

eNBs and some areas (lightly loaded) DCs serve a small number of eNBs connected

to them [34].

Different Virtual Network Functions (VNFs) are run on different data centers.

Each DC has a fixed capacity of holding application/service oriented VNFs. An

eNB gets service from the the data center it is connected to. N is the set of all

eNBs that are connected to the DC where the system is running. The data center

itself can run the respective VNF of a user under that eNB or it can manage

the service from any neighbor data center. The second case incurs extra service

cost. Vj is the set of all VNFs of eNB j ∈ N that are needed to be considered

for relocation and these VNF requests have been occurred for hand off between

eNB j ∈ N and any other eNB which is connected to a different DC. The major

notations and their descriptions used to design TradeRC are listed in Table. 3.1.

3.3 Design of TradeRC

In this section, we present an optimization framework of our proposed TradeRC

system and develop a meta-heuristic AI based Ant Colony Optimization (ACO)

algorithm. The main focus of TradeRC system is to provide an optimal placement
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Table 3.1: Notation Table

Notation Description
D The set of all data centers in the network

N
The set of all eNBs that are connected to the DC where
the system is running.

Vj
The set of VNFs of eNB j ∈ N that need to be considered
for relocation

δworst Maximum communication delay tolerated by the network

tk
The communication delay between DC k ∈ D and the DC
where the system is running

tj
The communication delay between eNB j ∈ N and the DC
where the system is running

Sf Size of Virtual Network Function VNF f ∈ V
φk Cost to relocate any VNF to DC k ∈ D
σk Cost of taking service from DC k ∈ D
ζk VNF holding capacity of DC k ∈ D
ϕf Execution time of VNF f ∈ V
γ Priority factor for VNF relocation

τf Transfer time of VNF f ∈ V
Xk Number of VNFs currently executing in DC k ∈ D

Y f
k,j

Summation of relocation time, communication time
and execution time because of allocating VNF f ∈ Vj
of eNB j ∈ N to DC k ∈ D

To Initial pheromone value

T kj,f
Pheromone value for placing VNF f ∈ Vj of eNB
j ∈ N to DC k ∈ D

Hk
j,f

Local heuristic value for placing VNF f ∈ Vj of eNB
j ∈ N to DC k ∈ D

pzj,f,k
Probability of choosing DC k ∈ D for placing VNF
f ∈ Vj of eNB j ∈ N by ant z

ρl Weight parameter for local pheromone update

ρg Weight parameter for global pheromone update

∆T kj,f
Global pheromone value for placing VNF f ∈ Vj of eNB
j ∈ N to DC k ∈ D in global solution.

α Weight parameter for pheromone value

β Weight parameter for local heuristic value

of the VNFs that are needed to be considered for relocation because of user mo-

bility. The system will run in each DC to manage the VNF requests of the eNBs

under it that have been come from other eNBs connected to a different DC because

of hand off due to user mobility. We have two main objectives: 1) minimizing the

number of VNF relocations and 2) minimizing total communication delay.
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As these two are conflicting objectives, we have brought a trade off between them

using priority factor for both. The priority factor can be changed according to the

requirement of the network.

3.3.1 Optimal Placement of VNFs

For placing VNF f ∈ Vj of eNB j ∈ N to DC k ∈ D, the relocation time, denoted

by Rf
k,j, is calculated as follows:

Rf
k,j = {(1− pfk)× b

f
k,j} ×H

f
k , (3.1)

where, pfk is a binary variable. If VNF f ∈ Vj is running on data center k ∈ D
before starting the solution, then pfk is 1 otherwise it is 0. Similarly, bfk,j is also a

binary variable. If we locate VNF f ∈ Vj for eNB j ∈ N in data center k ∈ D,

then it is 1; otherwise, it is 0. So, if (1−pfk) is 1 then we have an option to relocate

VNF on another DC otherwise not. If the value of {(1− pfk)× b
f
k,j} is 1, then we

are relocating the VNF f ∈ Vj to DC k ∈ D and we need to calculate relocation

time Hf
k for relocating VNF f ∈ Vj to DC k ∈ D. The relocation cost Hf

k is

calculated as,

Hf
k = (1− nfk)× τf , (3.2)

where, nfk is a binary variable. If the expected VNF f ∈ Vj is running on DC

k ∈ D, then it is 1 otherwise 0. We can get service for VNF f ∈ Vj from that DC

without creating any instance for that VNF. On the other hand, if nfk is 0, then

there is no running VNF f ∈ Vj on DC k ∈ D. So, we need to transfer that VNF

from the previous DC. Therefore, if the value of (1−nfk) is 1, then we transfer the

VNF from the previous DC otherwise not. If this value is 1, then relocation cost

is equal to the transfer time of that VNF. Transfer time of the VNF is calculated

as,

τf =
Sf
r
, (3.3)

where, Sf is the size of the VNF and r is achievable data rate to transfer a VNF

from one DC to another DC. Communication delay to get service for a VNF is

calculated as,

Cf
k,j = bfk,j × (tj + tk), (3.4)
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where, total communication delay is equal to summation of communication delay

between eNBj and the DC where the solution is running denoted by tj and com-

munication delay between DC k ∈ D where we are locating the VNF f ∈ V and

the DC where the solution is running. If we take service from the own DC where

the solution is running, then we need to calculate only tj. But if we take service

from another DC k ∈ D then we also need to add tk with it. Thus the objective

function of our work is formulated as,

Minimize :

W =
∑
j∈N

∑
f∈Vj

∑
k∈D

{γ ×Rf
k,j × φk + (1− γ)× Cf

k,j × σk}. (3.5)

Here, the objective function is formulated as a Multi-objective Integer Linear

Programming (MILP) to be solved by Data center (DC). Minimizing total VNF

relocation and minimizing total path cost in terms of communication delay are

two conflicting objectives. The objective function is bringing trade off between

relocation and communication (hereafter, we call our proposed system TradeRC)

using weight factor γ. There is some extra cost to get services from the global DC

than local DC. That is, if any eNB takes services from the distant DCs other than

the DC to which they are directly connected, the sevice cost increases. There is

also some cost to relocate VNF to any DC k ∈ D denoted by φk . Minimizing the

overall network cost is our main objective. There are some constraints that need

to be satisfied. Subject to:

bfk,j = {0, 1}, ∀j ∈ N, ∀f ∈ Vj, ∀k ∈ D (3.6)

∑
k∈D

bfk,j = 1, ∀j ∈ N, ∀f ∈ Vj (3.7)

∑
f∈Vj

∑
k∈D

bfk,j = |Vj|, ∀j ∈ N (3.8)

∑
k∈D

(Rf
k,j + Cf

k,j + ϕf ) ≤ δworst, ∀j ∈ N, ∀f ∈ Vj (3.9)

∑
j∈N

∑
f∈Vj

bfk,j ≤ ζk, ∀k ∈ D (3.10)

Constraint in Eq. 3.6 is a binary constraint. If VNF f ∈ Vj for eNB j ∈ N is

located in DC k ∈ D, then it is 1; otherwise 0. Constraint in Eq. 3.7 is an atomicity
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constraint. It ensures that every VNF f ∈ Vj for every eNB j ∈ N exists exactly

in only one data center k ∈ D. Constraint in Eq. 3.8 is the allocation constraint.

It ensures that, all VNF f ∈ Vj that comes from an eNB j ∈ N should be allocated

to some data centers. No VNF can be stayed unallocated to any DC. The QoS

constraint in Eq. 3.9 ensures that, summation of communication delay, execution

time and relocation time must be less than the maximum allowable application

deadline. The allowable delay can vary from application to application. Execution

time is calculated as;

ϕf =
If

MIPSk
, ∀k ∈ D (3.11)

The capacity constraint in Eq. 3.10 ensures that, total number of the VNFs of a

DC can’t be more than the maximum capacity of the DC.

Theorem 3.1. VNF placement problem in TradeRC, formulated in Eq. 3.5, is

NP-hard.

Proof. The above optimization formulation is a Multi-objective Linear Optimiza-

tion having two conflicting objectives, i.e, minimizing number of VNF relocations

and communication time. Such problem is NP-hard and can not provide solutions

in polynomial time for increasing number of VNFs and eNBs. The optimization

problem can be reduced to a Generalized Assignment Problem (GAP) which is

NP-Complete [35]. The Generalized Assignment Problem has the following com-

ponents,

1. A set T = {1, ....n} of tasks.

2. A set M = {1, ....m} of agents.

3. A cost function, C, giving the cost of assigning a task to an agent.

4. A capacity function, A, giving the capacity used when a task is assigned to

an agent.

5. A available capacity function, B, giving the available capacity of an agent.

The problem tries to minimize overall cost of performing the tasks which is given

as,
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Minimize :

∑
i∈T

∑
j∈M

CijXij (3.12)

Subject to,

∑
j∈N

AijXij < Bi, ∀i ∈M (3.13)

∑
i∈M

Xij = 1, ∀j ∈ T (3.14)

Xij ∈ {0, 1}, ∀i ∈M, ∀j ∈ T (3.15)

The optimal VNF allocation problem can be reduced to Generalized Assignment

Problem (GAP) by leveraging constraints and considering the problem for a sin-

gle eNB. Let, Zkf = Hf
k (1 − pfk) × γ × φk. Considering only relocation part, the

optimization problem takes the form,

Minimize :

∑
f∈Vj

∑
k∈D

Zkfb
f
k (3.16)

Subject to,

∑
f∈Vj

bfk ≤ ζk, ∀k ∈ D (3.17)

∑
k∈D

bfk = 1, ∀f ∈ Vj (3.18)

bfk ∈ {0, 1}, ∀f ∈ Vj, ∀k ∈ D (3.19)

As we can reduce the problem into GAP, it can be safely ensured that the pro-

posed formulation is at least as hard as GAP and no optimal solution is found in

polynomial time for large networks.

In support of evidence, we have carried out a simulation experiment. Fig. 3.2

shows the impact of the number of VNFs movement per eNB due to user mobility
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Figure 3.2: Impacts of number of VNFs movement per eNB on running time

on running time. To find the boundary values of the number of the eNBs per

DC and number of VNFs movement per eNB in the environment, we simulate the

objective function in Eq. 3.5 in the NEOS optimization server [36]. The result

shows that, 10ms to 100ms are required for 10 to 15 eNBs with increased number

of VNFs movement. As the number of eNBs and VNFs movement increases,

algorithm running time increases exponentially. For 30 eNBs under a DC and 300

VNFs movement from an eNB, running time is on an average 4000 ms to 5000 ms

which is not practical in real life to get a service.

3.3.2 Meta-Heuristic VNFs Placement

Due to the NP-hardness of the above optimization problem, we have provided

meta-heuristic Ant Colony Optimization (ACO) based VNFs placement algorithm

to solve this problem. We use meta-heuristic algorithm because it refers to master

strategy that helps us to modify other heuristics to generate solutions. Heuristics

are problem dependent and meta-heuristics are problem independent methods.

For that reason, Meta-heuristics algorithms can be applied to a wide range of

problems.

The ACO problem is an Artificial Intelligence (AI) based meta-heuristic algorithm

that takes inspiration from the behaviour of real ant colonies. In this problem,
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Algorithm 1 Ant Colony Based VNF Allocation at each data center k ∈ D
Input: eNB set N , VNF set Vj for each eNB j ∈ N and data center set D.
Output: VNF-DC pair for each eNB
1: Initialize system parameters α, β, ρl, ρg
2: Initialize ants set A
3: Generate initial solution using Algorithm 2
4: Calculate initial pheromone value To using Eq. 3.20
5: Set maximum iteration MAX-IT
6: while (iteration ≤ MAX-IT) do
7: for all ant a ∈ A do
8: for all eNB j ∈ N do
9: for all VNF f ∈ Vj do
10: Assign VNF f ∈ Vj for eNB j ∈ N to DC k ∈ D using Eq. 3.23
11: end for
12: end for
13: for all VNF f ∈ Vj do
14: Update the local pheromone value using Eq. 3.25
15: end for
16: end for
17: Update the global pheromone value using Eq. 3.26
18: iteration = iteration+ 1
19: end while
20: return VNF-DC pairs for each eNB

a set of agents (virtual ants) are created. These ants have small memory. Each

ant tries to build its solution using heuristic value. After that, these ants improve

their solutions by exchanging information via pheromones. Each ant updates its

local pheromone trail after building local optimal solution. Finally, all ants com-

bine their local optimal solution to build a global optimal solution in distributed

manner.

The proposed Ant Colony Optimization Algorithm for VNF placement has been

presented in Algorithm 1. At first, various system parameters and ants set have

been initialized in lines 1 and 2. Then we generate initial solution set using

algorithm 2 in line 3 and calculate the initial pheromone value, To, in line 4.

Then we produce different solution sets of placing VNFs of all eNBs to suitable

DCs for each ant based on pheromone values and local heuristic values in lines

7 to 12. Each time we get a local solution for an ant, we reduce the pheromone

values for each element of that solution by local pheromone update in lines 13 to

15, so that variety of solution is generated by the ants. After this is done for all

the ants of the ant set, we take the best solution set among the local ones as global

solution and update the global pheromone value in line 17.
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3.3.2.1 Initial Pheromone Calculation

When an ant moves from one place to another, it leaves a chemical, pheromone.

This pheromone is used to mark these paths and helps the following ants to find

their team members. In VNF allocation problem, pheromone represents the possi-

bility of keeping a VNF in a DC. Each ant starts with an initial pheromone value

for each VNF to DC pair. The initial solution is generated using First-Fit VNF

(FF-VNF) allocation algorithm approach, which is listed in Algorithm 2.

In algorithm 2, we form an initial solution set, So, by placing the VNFs of all the

eNBs to the DCs based on capacity of the DCs and satisfying application deadline

on a First-Fit basis. The inputs for this algorithm are set of eNBs under the

data center where the algorithm is running denoted by N , the set of VNFs of eNB

j ∈ N that are needed to be considered for relocation due to user mobility denoted

by Vj and the set of data centers D. The output of the algorithm is the initial

solution set, S0, that represents in which data center the VNF of a certain eNB

is placed initially. At first, the initial solution set S0 is initialized to an empty set

in line 1. Then the first loop begins from line 2 that is iterated for all the eNBs

under the data center where the algorithm is running and it finishes in line 12.

Inside this first loop, there starts a second loop from line 3 that iterates for all

the considerable VNFs of eNB j ∈ N and it ends in line 11. Again, inside this

second loop, there is a third loop beginning from line 4 that iterates for all the

data centers in the network and it finishes in line 10. Inside this third loop, there

Algorithm 2 First-Fit VNF Allocation at each data center k ∈ D
Input: eNB set N, VNF set Vj for each eNB j ∈ N and data center set D
Output: Set of VNF-DC pair for each eNB in the initial solution S0
1: S0 ← ∅
2: for all eNB j ∈ N do
3: for all VNF f ∈ Vj do
4: for all DC k ∈ D do
5: if (Xk < ζk && Y f

k,j ≤ δworst) then
6: S0 ← S0

⋃
{(j, f, k)}

7: Xk = Xk + 1
8: Break
9: end if
10: end for
11: end for
12: end for
13: return S0
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is a condition in line 5 that is, if the number of VNFs that are currently placed at

data center k ∈ D is less than the VNF holding capacity of of that data center and

the response time in case of placing the respective VNF f ∈ Vj of eNB j ∈ N to

that data center k ∈ D meets the application deadline, that data center is selected

for VNF assignment. In line 6, the assignment is added to initial solution set S0
and the number of existing VNFs of the selected data center is increased by one in

line 6. And the third inner loop is stopped doing futrher iteration for other data

centers in line 8. Finally, this algorithm returns the initial solution set, S0.

The initial pheromone value is calculated by summing the total relocation time

and total communication delay of the system and taking the inverse of that value.

Initial pheromone value is calculated as follows,

To =
∑
j∈N

∑
f∈Vj

∑
k∈D

1

Rf
k,j + Cf

k,j

× Ykj,f (3.20)

where Ykj,f is a binary variable. It is defined as,

Ykj,f =

1, if (j, f, k) ∈ S0

0, otherwise
(3.21)

where, S0 is the initial solution set. If VNF f ∈ Vj of eNB j ∈ N is placed to DC

k ∈ D in S0, then the value is 1, otherwise 0.

The rationale behind the choice is that, we want to provide more pheromone on

the path where relocation and communication occur in the initial solution. The

main reason to do inverse operation is that, the lower the value of the summation

of relocation time and communication delay, we give more pheromone on that path

and vice versa.

3.3.2.2 Determining Heuristic Value

For building solution in Ant Colony Optimization, each ant takes the decision of

placing a VNF to a data center combinedly based on pheromone values and local

heuristic value. This heuristic value is influential as it contributes to the selection

of data center to place a VNF for constructing solution. As our goal is to minimize

the total number of VNF relocation and minimize communication delay as well

as response time, i.e, bringing trade off between the two conflicting objectives, we
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have determined our heuristic value in such a way that these two objectives are

satisfied. Our local heuristic is defined as,

Hk
j,f =

1

γ ×Rf
k,j × φk + (1− γ)× Cf

k,j × σk
(3.22)

The heuristic value for placing VNF f ∈ Vj of eNB j ∈ N to data center k ∈ D is

thus determined by Eq. 3.22. As mentioned earlier, γ is the priority factor given

to VNF relocation and (1− γ) to communication time. From Eq. 3.22, it can be

ensured that the lesser the weighted sum of communication and relocation cost

for placing a VNF to a data center, the higher will be the value of heuristic. And

the favorability of choosing that data center to place a VNF by an ant will be

increased.

3.3.2.3 Selection of Data Center

Each ant a ∈ A selects the best suitable DC k ∈ Dc to place VNF f ∈ Vj of

eNB j ∈ N using the following rule, which is called pseudo-random-proportional

action rule. Here, Dc is the set of candidate DCs which have capacity available

to place that VNF and Dc ⊆ D. The pseudo-random-proportional action rule can

be defined as,

s =


argmax
k∈Dc

([
T kj,f
]α × [Hk

j,f

]β)
, if q ≤ q0 (exploitation)

S, otherwise (exploration)

(3.23)

where. q0 is a system parameter on the range [0,1] and q is a random variable

that is uniformly distributed in [0,1]. T kj,f is the pheromone value for allocating

VNF f ∈ Vj for eNB j ∈ N to DC k ∈ Dc. According to the rule, an ant

chooses the most suitable DC k ∈ Dc to place a VNF f ∈ Vj of eNB j ∈ N

in terms of heuristic value and pheromone trail value with q probability. Here,

α and β denote the relative importance of pheromone value and heuristic value,

respectively. Therefore, when q ≤ q0, an ant selects a DC k ∈ Dc for VNF f ∈ Vj,
where the quantity of

[
T kj,f
]α × [Hk

j,f

]β
gives the highest value among all possible

data centers. On the other hand, in case of exploration of an ant z chooses DC

k ∈ Dc to place a VNF f ∈ Vj of eNB j ∈ N with the following probability [37].
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pzj,f,k =


([
T kj,f
]α × [Hk

j,f

]β)
∑

d∈Dc

([
T dj,f
]α × [Hd

j,f

]β) , if k ∈ Dc

0, otherwise

(3.24)

This probability indicates that the DC k ∈ Dc that gives us highest probability

among all candidate DC d ∈ Dc, we place the VNF f ∈ Vj in that DC.

3.3.2.4 Pheromone Update

The process of updating pheromone values locally and globally are presented be-

low:

Local Update When an ant places a VNF in DC k ∈ D, it instantly updates

the pheromone trail. Local pheromone value is updated with respect to initial

pheromone value. It is updated by each ant as follows,

T kj,f (t+ 1) = ρl × T0 + (1− ρl)× T kj,f (t), (3.25)

where, ρl is a system parameter indicating the relative importance of historical

pheromone value and current pheromone value. By local pheromone update, every

time an ant allocates a VNF in a specific DC, its pheromone trail is decreased.

As a result it becomes less desirable for other ants of the colony. It encourages

exploration and helps to increase variety of solutions constructed by the colony.

Global Update Global pheromone value is updated when all ants construct

their local optimal solutions and then they update the global one. The global

optima is formed by selecting the best one among the local solutions produced by

all the ants. Let, the global solution set is G. Global pheromone value is updated

as the following equation,

T kj,f (t+ 1) = ρg ×∆T kj,f + (1− ρg)× T kj,f (t), (3.26)

where, ρg is a system parameter which indicates the relative importance of ∆T kj,f
and T kj,f (t) in Eq. 3.26. ∆T kj,f is the global pheromone value for updated global

solution G. The value of ∆T kj,f is determined by,



Chapter 3: Proposed Approach 31

∆T kj,f =

T kj,f , if (j, f, k) ∈ G

0, otherwise
(3.27)

If VNF f ∈ Vj of eNB j ∈ N is placed to DC k ∈ D in global solution G, then the

value of ∆T kj,f will be T kj,f , otherwise 0.

In brief, ACO meta-heuristic algorithm optimally selects a DC for a VNF from the

previous learning experience of the ants using pheromone value. After completing

one iteration, all ants update their pheromone value. In the next iteration, they

use their historical information. After successful completion of the algorithm, all

of the VNFs places in the data centers optimally.

3.4 Determination of Weight Parameter

In this subsection, we discuss on the chosen values of the weight parameters- γ, α,

β, ρl, ρg and the number of ants. This research is a first step insight on trading-

off between VNF relocation overhead and user QoE. Formulating a mathematical

model for weight parameter γ in real-time might help us to increase the perfor-

mance of the system. However, it requires extensive analysis on the depending

parameters including network size, the service arrival rate, time-deadline of appli-

cations, etc., which demands a separate research work.

Similarly for determining the values of α, β, ρl, ρg and the number of ants, we de-

pend on the numerous simulation experimental results and find that the following

values give us better results for the given network. We set α = 5, β = 1, ρl = 0.3,

ρg = 0.4, γ = 0.7 and number of ants = 20 for all experiments.

3.5 Conclusion

In this chapter, we formulate our proposed TradeRC optimization model to bring

trade-off between number of relocations cost and response time. For large net-

works, this model is proved to be an NP-hard one. For that reason, we have given

a AI based meta-heuristic Ant Colony Optimization (ACO) algorithm to find near
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optimal solution for the placement of VNFs in 5G data centers in polynomial

time. And as we shall see in the next chapter, our proposed TradeRC outperforms

the other state-of-the-art works in terms of user satisfaction and VNF relocation

overhead.



Chapter 4

Performance Evaluation

In the previous chapter, we have discussed on the assumptions of the proposed

system and formulate our TradeRC system for optimal placement of VNFs in

the DCs. Due to the NP-hardness of that optimal placement, we have provided

meta-heuristic ACO based VNFs placement algorithm. In this chapter, we present

the detail performance evaluation result of our TradeRC system and analyze its

effectiveness by comparing with other state-of-the-art works.

4.1 Introduction

In this chapter, we have compared the performance of proposed TradeRC system

with the state-of-the-art work: A-SGWR [20] and S-PL [20] systems. We have

also compared our system with the baseline greedy based FF-VNF method. To

solve the VNF allocation optimization problem, we have used CPLEX solver at

NEOS optimization server [36] (2x Intel Xeon E5-2698 @ 2.3-GHz 569 CPU and

92-GB RAM). To simulate our ACO base VNF allocation approach, we have used

Cloudsim [22].

4.2 Simulation Environment

We consider a network consisting of 12 data centers. Each DC has primary memory

between 2 to 16 GB and storage between 2 to 16 TB. Each DC has 200 - 400 VMs.

33
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Table 4.1: Simulation Environment

Parameter Value
Simulation area 2000 ×2000 m2

Number of Data-Centers (DC) 12
Number of eNBs under a DC 4 - 25
Number of VNFs under an eNB 500 - 2000
Communication delay between DCs 10 - 200 msec
Communication delay between DC and eNB 2 - 5 msec
Date rate to transfer VNF between DCs 1 - 50 Mbps
Size of each Virtual Network Functions (VNFs) 100 - 300 KB
Weight factor (γ) 0.7
Importance of pheromone value (α) 5
Importance of heuristic value (β) 1
Local pheromone constant (ρl) 0.3
Global pheromone constant (ρg) 0.4
Number of ants 20
Maximum Iteration MAX-IT 200

These VMs are heterogeneous in size and capacity. There are several numbers of

VNFs under a VM. Each VM has RAM between 512MB - 1024MB having clock

speed 2.50GHz - 3GHz. Therefore, the processing power of a VM is 500 - 1000

instructions per second. Achievable data rate of a transmission link is randomly

chosen with exponential distribution. We choose the range 1Mbps - 50Mbps for

assigning data rates to individual links. The average of the results got from 50

simulation runs is used to plot the graph data points. For each of the simulation

run, we have used different random seeds. Performance parameter values and

ranges are summarized in Table 4.1.

4.3 Performance Metrics

We have compared the performance of the studied systems on the following met-

rics:

• Quality of Experience (QoE): QoE is defined as the inverse of average nor-

malized response time to get service for a VNF from a particular DC. It

helps us to quantify how fast an algorithm can extend services to the users.

• Number of relocations of the VNFs: VNF relocation is defined as the total

number of migrations required to transfer a VNF from one DC to another.
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This metric has direct impact on the overall performances of the network.

Lower the value, higher is the user performance.

• User satisfaction is defined as the integrated metric in terms of the number of

VNF relocations and user Quality-of-Experience. It is computed as the sum

of the inverse of the normalized value of the number of relocations and the

normalized value of QoE. This represents overall performance of the studied

algorithms.

• VNF Relocation Overhead: Relocating a VNF from one DC to another

requires extra cost related to time and resources. VNF relocation overhead

is defined as the extra cost that is required to transfer a VNF from a DC to

another and the corresponding service cost. It is measured as the extra cost

divided by the total cost of the system.

4.4 Simulation Result

Here we have studied the performance of our proposed TradeRC system by varying

the number of eNBs under a DC, number of VNFs movement under an eNB and

capacity of different data centers.

4.4.1 Impacts of Number of VNFs Movement per eNB

In this experiment, we vary the number of VNF movements per eNB keeping the

number of data centers under a network, number of eNBs under a DC and DC’s

VNFs holding capacity fixed at 12, 20 and 600, respectively.

Fig. 4.1 shows that, increasing the number of VNFs movement from an eNB QoE

is decreased. In S-PL and in our TradeRC, Quality-of-Experience is very higher

than A-SGWR and FF-VNF methods and perform close to each other. But in A-

SGWR, response time is increased by huge amount after increasing the number of

VNFs movement. This is because, A-SGWR considered only minimizing number

of VNFs relocation. However, it didn’t consider response time for a service. For

that reason, QoE is very low in A-SGWR than S-PL and TradeRC methods. In A-

SGWR, maximum amount of response time can be infinity which is not applicable
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Figure 4.1: Impacts of QoE by varying the VNFs movement per eNB
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Figure 4.2: Impacts of number of relocations by varying the VNFs movement
per eNB

in real-life scenario. Therefore, S-PL and TradeRC performs better in terms of

QoE.

Fig. 4.2 shows that, as the number of VNFs movement from an eNB is increased,

the number of relocation percentage is also enhanced. From the graph, we see

that, for small networks number of relocation in S-PL and TradeRC is near to
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each other. But for large networks, number of relocation in TradeRC is much

less compared to S-PL solution. This is because, S-PL solution considered only

minimizing response time. However, they didn’t consider total number of reloca-

tion. In that system, maximum number of relocations can be infinity which is not

practical. On the other hand, FF-VNF greedy method doesn’t try to minimize

the number of relocations and response time. For that reason, FF-VNF performs

the worst than TradeRC in terms of number of relocations and QoE.

Fig. 4.3 indicates overall users’ satisfaction is increased by increasing the number

of VNFs movement from an eNB. For small types of networks, A-SGWR, S-PL

and TradeRC perform near to each others. However, for increasing number of

VNFs movement, user satisfaction in TradeRC is higher than other methods. In

A-SGWR and S-PL, the authors have considered to improve only one parameter.

However, for the other parameters they have not considered any requirement. In

FF-VNF method, none of these two parameters are considered to be improved.

Our system TradeRC works optimally for both of those parameters jointly. For

that reason, user satisfaction is high in TradeRC.

Fig. 4.4 indicates that, with increasing number of VNFs movement, VNFs reloca-

tion overhead is also raised. This is because, we need to relocate higher number

of VNFs from one DC to another DC with increasing number of VNFs movement.
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Figure 4.3: Impacts of user satisfaction by varying the VNFs movement per
eNB



Chapter 4: Performance Evaluation 38

50.0 90.0 130.0 170.0 210.0 250.0
Number of VNFs movement per eNB

0

10

20

30

40

50

Re
lo

ca
tio

n 
ov

er
he

ad
 (%

)

TradeRC
FF-VNF
A-SGWR
S-PL

Figure 4.4: Impacts of VNF relocation overhead by varying the VNFs move-
ment per eNB

Our proposed TradeRC works better than other methods. This is caused by the

fact that, in A-SGWR the authors tried to place all VNFs in one DC where the

algorithm is running. So we need extra cost to get service from that DC. On the

other hand, in S-PL, the number of relocations is very much higher than TradeRC

and A-SGWR. For that reason, relocation cost is very much higher in S-PL. In

greedy based FF-VNF method, we place the VNF in that DC where the capacity

is available. We don’t consider minimization of any parameter. For that reason,

our proposed TradeRC system works better than other methods in terms of VNFs

migration overhead cost.

4.4.2 Impacts of Number of eNBs per DC

In this experiment, we vary the number of eNBs under a DC keeping the number

of data centers under a network, number of VNFs movement per eNB and DC’s

VNFs holding capacity fixed at 12, 250 and 600, respectively.

Fig. 4.5 shows that, QoE is decreased with increased number of eNBs under a

DC. In S-PL and our TradeRC systems, QoE is close to each other. However,

response time is less in S-PL than TradeRC because it’s main target is to mini-

mize response time. For that reason QoE is very high in that approach. On the
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Figure 4.5: Impacts of QoE by varying the number of eNBs per DC
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Figure 4.6: Impacts of number of relocations by varying the number of eNBs
per DC

other hand, response time is very higher in A-SGWR and FF-VNF methods than

other two systems. Because, A-SGWR considers only minimizing the number of

VNF relocations. However, they didn’t consider minimizing response time to get

a service from a DC. In their system, response time can be infinity which is not
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feasible in real life. In FF-VNF greedy solution, we have not considered to mini-

mize the number of VNF relocations. If we have capacity in the DC, we place that

VNF greedily in that DC. Therefore, QoE is very low in A-SGWR and FF-VNF

methods.

Fig. 4.6 depicts that, number of VNF relocations is enhanced with the higher

number of eNBs under a DC. As the number of eNBs is raised, the number of

VNF relocations is also increased. In A-SGWR and TradeRC system, the number

of VNF relocations is less than S-PL and FF-VNF approach and they perform close

to each other. A-SGWR performs better than TradeRC because, it only considered

to minimize the number of VNF relocations. In S-PL, number of relocations is

very much higher. This is because, they have only considered to minimize the

response time. In that system, number of relocations can be infinity which is not

real life scenario. In FF-VNF greedy method, we have not consider to minimize

the response time. For that reason, response time is higher in FF-VNF.

From Fig. 4.7, we observe that user satisfaction is decreased with the increased

number of eNBs per DC. For small types of networks, all methods perform near

to each other. However, for large networks user satisfaction is higher in TradeRC

than other approaches. In A-SGWR and S-PL, the authors have considered to

improve only one parameters. However, for the other parameters, they have not
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Figure 4.7: Impacts of user satisfaction by varying the number of eNBs per
DC
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Figure 4.8: Impacts of VNF relocation overhead by varying the number of
eNBs per DC

considered any requirement. The other parameter value can be infinity in that

systems. For that reasons, user satisfaction is less in that systems. Our system

TradeRC works optimally for both of those parameters jointly.

Fig. 4.8 indicates VNF relocation overhead by increasing number of eNBs under

a DC. Although relocations overhead in TradeRC method increases with higher

number of eNBs per DC, it performs better compared to other systems. This is

because, in A-SGWR all VNFs are tried to migrate to that DC where the algorithm

in running. In that system, relocation cost is very low but extra service cost is

required to get service from that DC. In S-PL, the number of relocation is very

much higher. For this reason, relocation cost is very higher in that system. Due

to this reasons, VNF relocation overhead is higher than our TradeRC system. On

the other hand, in FF-VNF greedy approach, we have not considered minimizing

the number relocations and response time. For that reasons, migration overhead

is very much higher in FF-VNF method than other approaches.

4.4.3 Impacts of VNF holding capacity of DC

In this experiment, we measure the impact of DC’s VNFs holding capacity by

varying the capacity of DC keeping the number of data centers under a network,
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number of eNBs under a DC and number of VNFs movement per eNB fixed at 12,

20 and 250, respectively.
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Figure 4.9: Impacts of QoE by varying VNF holding capacity of DC

Fig. 4.9 depicts that, by increasing the capacity of DC, QoE is increased. TradeRC

and S-PL perform close to each other in terms of QoE. In S-PL, their main objec-

tive was to minimize response time. For that reason, S-PL performs better than

other methods in terms of QoE. Again, TradeRC performs better than A-SGWR

and FF-VNF method because in TradeRC, we try to bring trade off between re-

sponse time and the number of relocations. On the other hand, response time can

be infinite in A-SGWR system which is not practical. For that reason, QoE is very

low in A-SGWR and FF-VNF methods. Therefore, S-PL and TradeRC perform

better with respect to QoE than other two methods.

From Fig. 4.10 we see that, number of relocations is decreased with increasing

the capacity of the DC. This is because, by increasing capacity, it means that DC

has enough capacity and particular type of VNFs is available in that DC. So we

don’t need to relocate VNFs to get that particular type of service from another

DC. A-SGWR and TradeRC perform better than other two approaches and A-

SGWR perform better than TradeRC because in A-SGWR, it tried to minimize

the number of relocations only. On the other hand, S-PL performs the worst

because in S-PL the authors tried to minimize response time allowing infinite
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Figure 4.10: Impacts of number of relocations by varying VNF holding ca-
pacity of DC

number of relocations in their system which is not feasible in real life. In FF-

VNF, we don’t consider to minimize the number of relocation. For that reason,

the number of relocations is very much higher in FF-VNF method.
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Figure 4.11: Impacts of user satisfaction by varying VNF holding capacity of
DC
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user satisfaction is improved with the increasing capacity of the DC which is

depicted in Fig. 4.11. user satisfaction is also high in our proposed TradeRC

system in that case. This is because, TradeRC brings trade-off between the two

conflicting objectives and works optimally for both of those two parameters jointly.

On the other hand, A-SGWR and S-PL tried to improve only one parameter value.

In these systems, other parameter value can be infinity. For that reason, user

satisfaction is less in A-SGWR and S-PL than TradeRC.

Fig. 4.12 shows that, VNF relocation overhead decreases with increased capacity

of the DC. This is because, with increasing number of DC’s capacity, number of

reloactions decreases. In FF-VNF greedy method, extra service cost and reloca-

tions cost are huge. Because, in that method, the number of relocations is not

minimized. In A-SGWR, all VNFs were tried to be placed in one DC so that the

number of relocations is reduced. In that system, extra service costs are required

to get service where the algorithm is running. On the other hand, In S-PL, the

number of relocations can be infinite. For that reason, relocations cost are huge

in that system. Therefore, migration overhead cost is higher in S-PL, A-SGWR

and FF-VNF systems than our proposed TradeRC system.
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Figure 4.12: Impacts of VNF relocation overhead by varying VNF holding
capacity of DC
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4.5 Conclusion

From the above discussion and results, it can be implied that by varying the

number of VNFs movement per eNB, our proposed TradeRC system outperforms

the A-SGWR, S-PL and greedy based FF-VNF algorithm in terms of overall user

satisfaction and VNF relocation overhead. We have also got improved results by

varying the number of eNBs per DC and by varying the VNF holding capacity of

a DC in terms of overall user satisfaction and VNF relocation overhead compared

to other state-of-the-art works.



Chapter 5

Conclusion

In this chapter, we summarize our research work and present overall discussion of

this thesis. We also state few guidelines for the researchers and our future plan.

5.1 Summary of the Research

With the advent of 5G network technology, users will experience higher through-

put, lower latency, higher mobility range and faster uploading and downloading

speed. Network Function Virtualization (NFV) and Software Defined Network

(SDN) are the two major features of 5G technology. Due to the NFV technology,

all functions of the mobile devices are run on cloud. This saves huge amount of

battery life of the mobile devices. All users are connected to eNBs and these eNBs

are connected to the DCs. Therefore, users’ services are run in these DCs. When

any user moves from one eNB to another eNB that are connected to different DC,

the proper allocation of respected VNF is a major concern.

This project introduced a framework for optimal placement of VNFs in 5G data

centers. Decreasing the response time for user code execution in VNFs of 5G data

centers can be achieved by enabling VNF relocations; however, excessive migration

causes communication and computation overhead. This work explored optimal

trading-off approach in between two conflicting objectives- maximizing Quality-

of-Experience and minimizing number of VNF relocations. For large networks,

this placement problem was proven to be an NP-hard problem. Our proposed

46



Chapter 5: Conclusion 47

AI based ACO solution maximized Quality-of-Experience and minimized reloca-

tion overhead, increasing user satisfaction. The experimental results have shown

significant performance improvement in terms of user satisfaction and relocation

overhead as high as 25% and 15%, respectively.

5.2 Discussion

5G network technology is very emerging technology in the next few years. It offers

massive device connectivity, higher throughput and almost zero latency. Frequency

spectrum of 5G is divided into millimeter waves. These millimeter waves provide

fastest data rate than other previous technologies. We found that the current

challenges for 5G technology are load balancing among the cloudlets, mobility

issues, getting real time services and energy consumption of the small cells.

In this thesis, we have provided an optimal placement algorithms of VNFs in the

DCs due to user mobility. Due to the movement of users from one eNB to another

that is connected to different DC, how can users take services in that case is a

matter of concern. If user takes service from the previous DC through DC to

DC communication, this increases the response time significantly. However, this

reduces migration cost of the whole network. On the other hand, if the VNF is

migrated from the previous DC to current DC, this increases the migration cost but

reduces reponse time to get a service. Therefore, if we improve the performance

of one parameter, performance of some other parameters is decreased at the same

time. So we need to bring trade-off between them. Previous research works [19,

20] focused on improving one parameter. In our research work, we have focused

on optimal placement of VNFs in the DCs considering all of those parameters

that minimizes total number of relocations and improves QoE at the same time.

However, this optimal placement of VNFs is an NP-hard problem. For that reason,

we have provided an AI based meta-heuristic Ant Colony Optimization (ACO)

algorithm for VNF placement that provides a sub-optimal solution.

The Computer Networking and Design and Analysis of Algorithm courses have

helped us a lot providing theoretical idea of the network architecture and to prove

our formulation of optimal placement of VNFs as an NP-hard one. At first, prob-

lem formulation of the MILP was very difficult for us and we needed to spend lot

of time in that phase. Besides this, getting introduced with NEOS optimization
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server and to cope with new programming language CPLEX were much hectic for

us. Spending plenty of time in the laboratories with our friends and researchers

and reading a lot of papers of various sectors were the key to get success.

5.3 Future Work

In this thesis, we basically work on the optimal placement of VNFs in the DC by

trading-off between minimizing the number of VNF relocations and maximizing

QoE. While we get promising solutions compared to other state-of-the-art works,

there are still several challenging issues that can further be investigated.

In the future, we want to develop mathematical modeling and analysis for deter-

mining the values of the system parameters dynamically so as to further enhance

the performances. In our thesis, we have fixed the value of all wight parameter for

all types of network. By varying the value of that weight parameter in respect to

network size in real time, we can further enhance our performance.

In our thesis, we have not considered load balancing issue among the data-centers.

So, one DC need to handle huge amount of VNF but another can’t handle at all

at the same time. This degrades the overall network performance. Load balancing

among the the DCs can also be another research problem that will improve the

service performances.
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